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The problem of the stability of a fluid with time-dependent heating has been 
investigated by Morton (1957), Lick (1965) and Foster (1965). Morton and Lick 
assumed that the rate of change of the temperature profile is small compared with 
the growth rate of the disturbances (quasi-static assumption). This assumption 
is invalid near the onset of instability (as defined by a/at = 0) ,  and Foster has 
therefore used an initial-value approach. 

In  this paper the range of validity of the quasi-static assumption is discussed, 
and results of a time-scaled analysis and calculations based on this are compared 
with the work of Foster; the agreement is found to be good. We restrict our atten- 
tion to a semi-infinite fluid initially a t  a constant temperature; at time t = 0 a 
temperature difference AT is applied at  the (lower) horizontal boundary (case 
(A) of Foster). 

The equations of the Boussinesq approximation are 

a 
- vW = - gu vge + v vdw, 
at 

where w is the vertical perturbation velocity, 6' is the perturbation temperature, 
To = T, + AT erfc ( & / ( K t ) t )  and 

In  an infinite region possible length scales are ( K t ) i ,  A-4 ( A  = gaAT/Kv). The 
cube of the ratio of these two length scales is the time-scaled Rayleigh number 

Rt = 
ga AT (Kt)# 

KV 

Scaling with a length scale of ( ~ t ) *  appropriate to the basic temperature 
profile(equiva1ent to a change of independent variables from t ,  x to t, x' = XI(&) 
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and a temperature difference AT, i.e. t = t’, x = ( ~ t ) *  x’, w = ( ~ / t ) $  w’, 8 = AT e‘, 
gives (dropping the primes) 

Jn ( y 2 ) w ,  (v2-tg+si+2ay+2az a x a  y a  e = --exp - 

(4) 

where CT is the Prandtl number, CT = V / K .  

It is usual when considering a problem with a time-independent basic state to 
define the onset of instability by the criterion a/at = 0, noting that for a very 
small rate of growth the original perturbation will eventually reach a sizeable 
magnitude and that the time taken for this growth is of no importance in the 
definition of such a state as stable or unstable. However, in the present problem 
we have a time-dependent basic state and may therefore choose to define the 
onset of instability as occurring a t  that time when the perturbation becomes 
large enough for non-linear effects to be important; or (we assume, equivalently) 
when the disturbance is first physically detectable. It is this time (or equiva- 
lently Rt = A ( ~ t ) i ,  when any initial perturbation has grown by several orders of 
magnitude and is growing superexponentially, that we wish to calculate. 

If the assumption is made that the rate of growth is of order unity while Rt is 
of order unity (as seems reasonable from examination of (4), (5); and as demon- 
strated by the work of Poster), the perturbation will still be infinitesimally small 
when Rt reaches a large value and the linear theory remains valid at this time. 

When Rt is large we may carry out a two-time analysis of the problem, intro- 
ducing the time scales 

t,= t(l+R,%,+ ...), 

and expanding the velocity and temperature asymptotically: 

8 = O(t,,t)+ ..., 

W = Rf W(t,, tl) + . . . . 
Thus t(a/at) M Rft,(a/at,) N Rf and b, c are chosen so that both sides of (4), 
(5) are of equal orders of magnitude. 

This analysis is equivalent to that following from the quasi-static assumption 
(that the rate of change of the basic temperature profile is small compared to 
the growth rate of the disturbance, i.e. t(a/at) 9 1) and makes clear the region of 
validity of that assumption. Since the quasi-static assumption does not hold a t  
the onset of instability as defined by t(a/at) = 0, the Rayleigh number noted by 
Lick (1965) for this has no significance, the theory used being invalid at  that time. 
(The time-scaled Rayleigh number quoted in that paper for this onset of insta- 
bility, R, M 300, is a misprint, the value obtained from figure 5 being Bt M 5.4.) 
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(i) Large Prandtl number l / g  + 0 

A two-time analysis of (4 )  and (5) yields the following first-order equations for 
large R,: 

V4w1 = - a p ,  (6) 

where t ajat = nB,, w’ = Ri’w, a, is the scaled horizontal wave-number (pro- 
vided the region is effectively infinite, i.e. (&)* < L, the relevant length scale is 
( K t ) B  and the physical wavelength varies with time). 

The solution is obtained by expanding the temperature perturbation in a 
Fourier sine series and solving the resulting set of coupled differential equations. 
This method is outlined in Chandrasekhar (1961, p. 53). 

For the maximum rate of growth we have 

and from this we obtain 

loglow = ~oglow,+ 0*434+nm,&?,. ( 8 )  

For free horizontal boundary conditions (zero vertical velocity, zero tangential 
stress) the rate of growth is a maximum at a wave-number a, s 0.48 and the 
velocity then obeys the equation 

loglow = log,ow, + 0*039R,. 

For rigid horizontal boundary conditions (zero vertical and horizontal velo- 
cities) the rate of growth is a maximum at a wave-number ur M 0-9 and the velo- 
city then obeys the equation 

log,,w = log,, w,+ 0-om,. 

The wave-numbers for maximum growth, the above dependence of w on R,, 
and the coefficients agree with data supplied by Foster. Some of these data are 
found in Poster’s paper; other data including result up to w = 108 were obtained 
by private communication. In both cases the data are fitted by choosing 

loglow, = -0.37, i.e. wo = 0.43. 

of 0.43 before the quasi-static assumption becomes valid. 
Thus the initial infinitesimal perturbation changes in magnitude by a factor 

The Prandtl number is considered large when (l/a)ta/at < 1 and, since - R, here, this condition is S R,. 

(ii) Small Prandtl number 

A two-time analysis of (4 ) ,  (5) yieldsin this case the following first-order equations 
for large R,: 

-nVZwN = -a,28, (9) 
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where t a/at = (aR,)g n, w” = (vR,) -4 w, a, is the scaled horizontal wave-number. 
The eigenvalue problem is now of lower order and the boundary conditions 
are that the vertical velocity is zero on the horizontal boundary and at z = 00. 

For the maximum rate of growth we have t awlat = n,,(rR,)* w and from 
this we obtain 

The rate of growth is a maximum at a wave-number of at N 4.5-5.0 and the 
velocity then obeys the equation 

loglow = logl,w, + 0*38(aR,)*. 

Foster’s calculations show at - 4 and his equation for the velocity is 

loglow = loglow,+ 0-22(aRt)9. 

This relation was calculated from data supplied by Foster in a private com- 
munication. It is interesting to note that the second and third eigenvalues for 
n,,, in the present work give the velocity equations 

loglow = logl,wo+O~29(aR,)~ and loglow = loglow,+ 0.19 (crR,)g. 

The Prandtl number is considered small when cr-lts a/at $ 1 and since 

t a p t  ( V R , ) ~  

here, this condition is v < R,. 
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